Diversity and phylogeny of gephyrin: tissue-specific splice variants, gene structure, and sequence similarities to molybdenum cofactor-synthesizing and cytoskeleton-associated proteins.

نویسندگان

  • M Ramming
  • S Kins
  • N Werner
  • A Hermann
  • H Betz
  • J Kirsch
چکیده

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5' coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3-7 and 16-29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells.

The molybdenum cofactor (Moco), a highly conserved pterin compound complexing molybdenum, is required for the enzymatic activities of all molybdenum enzymes except nitrogenase. Moco is synthesized by a unique and evolutionarily old pathway that requires the activities of at least six gene products. Some of the proteins involved in bacterial, plant, and invertebrate Moco biosynthesis show striki...

متن کامل

The Drosophila molybdenum cofactor gene cinnamon is homologous to three Escherichia coli cofactor proteins and to the rat protein gephyrin.

Essentially all organisms depend upon molybdenum oxidoreductases which require a molybdopterin cofactor for catalytic activity. Mutations resulting in a lack of the cofactor show a pleiotropic loss of molybdoenzyme activities and thereby define genes involved in cofactor biosynthesis or utilization. In prokaryotes, two operons are directly associated with biosynthesis of the pterin moiety and i...

متن کامل

Molybdenum Cofactor Biology and Disorders Related to Its Deficiency; A Review Study

Background: Molybden, as a vital and essential micronutrient is directly involved in the metabolism of other elements including carbon, sulfur, and nitrogen. Molybdenum alone is not biologically active unless it binds to specific cofactors. Except for the bacterial nitrogenase, which contains molybdenum-Iron complex, molybdenum cofactor (Moco) is considered as the bioactive component placed in ...

متن کامل

Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein

A 93 kd polypeptide associated with the mammalian inhibitory glycine receptor (GlyR) is localized at central synapses and binds with high affinity to polymerized tubulin. This protein, named gephyrin (from the Greek gamma epsilon phi upsilon rho alpha, bridge), is thought to anchor the GlyR to subsynaptic microtubules. Here we report its primary structure deduced from cDNA and show that corresp...

متن کامل

Gephyrin: does splicing affect its function?

Gephyrin is a protein involved in both synaptic anchoring of inhibitory ligand-gated ion channels and molybdenum cofactor synthesis. Substantial progress has been made in understanding its gene and protein structures. Furthermore, numerous binding partners of gephyrin have been identified. The mechanisms by which these interactions occur are unclear at present. Alternative splicing has been pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 18  شماره 

صفحات  -

تاریخ انتشار 2000